Table of Contents

Lab Overview - HOL-1801-02-CMP - vRealize Suite Standard: Automated, Proactive Management.. 2
Lab Guidance .. 3
Module 1 - Automated workload placement and predictive DRS (30 minutes) 9
 Workload Balancing and Placement ... 10
 Proactively relieve compute contention (pDRS) .. 23
 Module Conclusion .. 26
Module 2 - Automated remediation of issues (30 minutes) .. 27
 Introduction .. 28
 Understanding the Alerting Framework ... 29
 Constructing Symptoms ... 30
 Recommendations and Actions .. 49
 Building Alerts .. 52
 Automated Remediation ... 66
 Conclusion ... 91
Lab Overview - HOL-1801-02-CMP - vRealize Suite Standard: Automated, Proactive Management
Lab Guidance

Note: It will take more than 60 minutes to complete this lab. You should expect to only finish 2-3 of the modules during your time. The modules are independent of each other so you can start at the beginning of any module and proceed from there. You can use the Table of Contents to access any module of your choosing.

The Table of Contents can be accessed in the upper right-hand corner of the Lab Manual.

In this Lab you will see how to automate the workload balance across your vSphere Infrastructure and automatically remediate any issues that may come up in the environment.

Lab Module List:

- **Module 1 - Automated workload placement and predictive DRS** (60 minutes) (Advanced)
- **Module 2 - Automated remediation of issues** (30 minutes) (Advanced)

Lab Captains:

- Module 1 - Mark Plaza, Sr. Systems Engineer, USA
- Module 2 - Tiago Baeta, Staff Systems Engineer, Brazil

This lab manual can be downloaded from the Hands-on Labs Document site found here:

http://docs.hol.vmware.com

This lab may be available in other languages. To set your language preference and have a localized manual deployed with your lab, you may utilize this document to help guide you through the process:

Location of the Main Console

1. The area in the RED box contains the Main Console. The Lab Manual is on the tab to the Right of the Main Console.
2. A particular lab may have additional consoles found on separate tabs in the upper left. You will be directed to open another specific console if needed.
3. Your lab starts with 90 minutes on the timer. The lab can not be saved. All your work must be done during the lab session. But you can click the **EXTEND** to increase your time. If you are at a VMware event, you can extend your lab time twice, for up to 30 minutes. Each click gives you an additional 15 minutes. Outside of VMware events, you can extend your lab time up to 9 hours and 30 minutes. Each click gives you an additional hour.

Alternate Methods of Keyboard Data Entry

During this module, you will input text into the Main Console. Besides directly typing it in, there are two very helpful methods of entering data which make it easier to enter complex data.
Click and Drag Lab Manual Content Into Console Active Window

You can also click and drag text and Command Line Interface (CLI) commands directly from the Lab Manual into the active window in the Main Console.

Accessing the Online International Keyboard

You can also use the Online International Keyboard found in the Main Console.

1. Click on the Keyboard Icon found on the Windows Quick Launch Task Bar.
Click once in active console window

In this example, you will use the Online Keyboard to enter the "@" sign used in email addresses. The "@" sign is Shift-2 on US keyboard layouts.

1. Click once in the active console window.
2. Click on the Shift key.

Click on the @ key

1. Click on the "@ key".

Notice the @ sign entered in the active console window.
Activation Prompt or Watermark

When you first start your lab, you may notice a watermark on the desktop indicating that Windows is not activated.

One of the major benefits of virtualization is that virtual machines can be moved and run on any platform. The Hands-on Labs utilizes this benefit and we are able to run the labs out of multiple datacenters. However, these datacenters may not have identical processors, which triggers a Microsoft activation check through the Internet.

Rest assured, VMware and the Hands-on Labs are in full compliance with Microsoft licensing requirements. The lab that you are using is a self-contained pod and does not have full access to the Internet, which is required for Windows to verify the activation. Without full access to the Internet, this automated process fails and you see this watermark.

This cosmetic issue has no effect on your lab.

Look at the lower right portion of the screen
Please check to see that your lab is finished all the startup routines and is ready for you to start. If you see anything other than "Ready", please wait a few minutes. If after 5 minutes your lab has not changed to "Ready", please ask for assistance.
Module 1 - Automated workload placement and predictive DRS (30 minutes)
Workload Balancing and Placement

Within a virtualized environment, even with the best planning, the distribution of the workloads between hosts, clusters and data centers can get out of balance. Being out of balance itself is not a problem as long each workload can obtain the resources it needs without causing contention. Contention exists when the workload on a specific host requests more resources than are available. Resource contention is one of the most critical issues in any virtualized environment. When contention occurs, applications slow down and your users are affected.

Distributed Resource Scheduler (DRS) is a proven vSphere feature that moves virtual machines (VMs) within a cluster (between hosts) to ensure virtual machines are always running on a host with adequate resources to support it.

vRealize Operations Manager can move virtual machines between clusters to ensure the clusters are balanced in the environment, which in the end helps DRS. vRealize Operations Manager's Rebalance Container action allows you to balance workloads between the clusters in your data center or custom data centers by providing you move recommendations. These move recommendations come in the form of a rebalance action plan. The plan lists move recommendations and provides a reason on why to move it (CPU or memory imbalance).

Up until now two different methodologies have been employed to mitigate the risk of contention, with varied results. New to vRealize Operations and vSphere is Predictive DRS, a capability that can be used to minimize resource contention proactively. Predictive DRS uses a combination of DRS and vRealize Operations Manager to predict future demand and determine when and where hot spots will occur. When future hot spots are found, Predictive DRS moves the workloads before contention occurs.

Launch the HVM vRealize Operations Manager Console

Open Firefox Browser from Windows Quick Launch Task Bar

1. Click on the Firefox Icon on the Windows Quick Launch Task Bar.
Set Browser Zoom Level

The lab environment has a default resolution of 1024x768. To minimize the need for extensive scrolling within the vRealize Operations user interface, please adjust the zoom level in Firefox.

1. Open the Firefox Menu drop down.
2. Set the desired zoom level. Typically 80-90% is sufficient to provide adequate screen space for your lab environment. Also making use of the full-screen option is recommended.

HVM vRealize Operations Manager Console

1. Select HVM vRealize Operations Manager from the browser toolbar
Login with the local admin credentials.

1. Select Local Users from the drop down.
2. ID = admin; Password = VMware1! and Click LOG IN

Workload Rebalancing

In the following steps and video, you will learn how to remediate a cluster based resource constraint by rebalancing virtual machines between clusters using the Rebalance Container Action.
Note: It is important to balance between clusters configured for workloads of similar priority or importance to your organization.

For example, you would not want to balance workloads in a test/dev environment with your production, mission critical applications; this could cause unexpected behavior within the production environment.

Due to the significant amount of resources required to simulate an out of balanced cluster, which would negatively affect the lab as a whole, we have chosen to walk you through how to access the Workload Balancing within vRealize Operations Manager.

Accessing the Workload Utilization Dashboard

1. Click on the **HOME** button.
2. Click on **Workload Balance**
The Workload Utilization

The Workload Distribution widget divides objects into 3 categories:

1. **Underutilized**
2. **Optimal**
3. **Overutilized**
Drill into an Overutilized Resource

1. In the **Cluster Compute Resource** section (may require you to scroll), hover over the **lab-auto** cluster in the **Overutilized** area.
2. Click **Details**.
Cluster Details

1. Click the **Analysis** tab, and **Capacity Remaining**.
2. You can see details on why the cluster is constrained, and that **Capacity Remaining** is in a critical state.

Notice capacity is monitored by Disk, Memory, and CPU. In this case the **Memory** is the "most constrained" resource.
Identify the Datacenter for lab-auto cluster

1. Click **Home**.
2. Click **Environment**.
3. Select **vSphere Host and Clusters**.
1. Expand the Host and Clusters, "VC Lab" vCenter, and "lab-dc" datacenter. Let’s take a look at the resource levels for this datacenter.
2. Click on the lab-dc object
3. Click the More icon to display All options for this data center.

All Metrics

1. Select the Analysis tab
2. Note that the **Capacity Remaining** and **Time Remaining** are displaying resource constraints in the environment.

3. Before we initiate a rebalance action to redistribute compute resources, the policy needs to be modified to enable this feature. Click the **policy** associated with the datacenter.

Modify the Policy

![Modify the Policy]

1. Select **Policy Library**.
2. Click **vSphere Solution's Default Policy**.
3. Click the **pencil** to begin editing the policy.
Change the Workload Balance Configuration

The default workload balance configuration is set to **Conservative**. While this is a good setting for dynamic environments, it may not always balance the environment adequately.

1. Select **Workload Automaton**.
2. Click on the lock on **Balance Workloads** to unlock.
3. Click on the middle option to set the configuration to **Moderate Balance**. This setting offers a good mix of movement and balance while minimizing the impact of moving virtual machines.
4. Click **Save** (not shown)
Start Rebalance Container Action

1. Click Home button.
2. Select Workload Balance.
3. Select lab-dc Datacenter object
4. Click on the Rebalance action. (option is only available for a data center or a custom datacenter)

Note: Since this is a controlled lab environment the "Rebalance Clusters" feature cannot be improved and is disabled. Take some time to review what other information is available in this dashboard. The next page shows an example of what the rebalance action looks like.
Review Rebalance Container Action

Here is an example of what the Rebalance Container action overview provides. Details on what systems will be moved to restore balance to the clusters and what this action will address.

You can see more details on this through this video: https://youtu.be/w5Pgs_8aazI
Proactively relieve compute contention (pDRS)

Resource contention is one of the most critical issues in any virtualized environment. When contention occurs, applications slow down and your users are affected. Up until now two different methodologies have been employed to mitigate the risk of contention, with varied results. But now I want to introduce you to the new “game changing” method available from VMware: Predictive DRS!

Predictive DRS

How does Predictive DRS work? It starts by leveraging one of the core functions of vRealize Operations, Dynamic Thresholds, which understand the behaviors of all workloads throughout the day. vRealize Operations Manager collects hundreds of metrics across numerous types of objects (hosts, datastores, virtual machines, and other objects) every day. Each night vRealize Operations Manager runs Dynamic Threshold calculations using sophisticated analytics to create a band of what is “normal” for each metric/object combination. The band has an upper and lower bound of normal for each metric associated with object. For example, if there is a simple application server virtual machine, vRealize Operations Manager will show the virtual machine does not use a lot of CPU early in the morning. However, at 8 AM, when people start logging into the system, the CPU load will spike very high. It will then taper off around noon as people go to lunch, and then back up again for the rest of the day until people go home. And don’t forget about the nightly reports which run at 2AM and spike CPU.

![Diagram](image-url)

“Will any of my hosts struggle to serve my workloads in the next hour?”
The great thing about Dynamic Thresholds is that they are tailored to each individual virtual machine and application. There is nothing you need to do; the analytical engine in vRealize Operations takes care of everything.

Once vRealize Operations Manager has calculated its Dynamic Thresholds we have 3 fundamental data points:

- How many resources is each virtual machine going to need throughout the day
- What virtual machines are on running on what hosts?
- How big is each host?

Once we have those we can ask the most important contention mitigation question of all, “Will any of my hosts struggle to serve my workloads today”? If the answer is “Yes” then let’s move a few virtual machines around to avoid that future contentious situation. In a nutshell, this is how Predictive DRS works.

Which method should you use?

Which method is best?

Reactive
- DRS
 - Resolve unexpected resource demand
 - Minimal overhead
 - Only moves VMs that must be moved
 - Moves VMs when contention starts

Balance
- DRS & vR Ops
 - Balancing workloads across hosts and clusters
 - Mitigates risk
 - Attempts to prevent hot spots
 - HUGE potential for overhead
 - No guarantees

Predictive DRS
- DRS and vR Ops
 - Predict the future demand
 - Minimal overhead
 - Only moves VMs that must be moved
 - Moves before contention starts

By combining DRS capabilities of vSphere 6.5 with historical trends, KPIs and analytics from vRealize Operations Manager, users can get three ways for avoiding/resolving resource contention.

1. **Reactive**: The vSphere Distributed Resource Scheduler (DRS) capability resolves unexpected resource demand by moving VMs within a cluster when contention begins.
2. **Balance**: By combining vSphere DRS and vRealize Operations Work Load Placement (WLP) capabilities, VI admins can balance utilization by moving VMs between clusters, thereby mitigating resource contention risk.
3. **Predictive**: In Predictive DRS, resource utilization trends from vRealize Operations Manager are sent to vSphere 6.5 DRS. This predictive demand of workloads is incorporated into DRS algorithms to provide faster balancing and better performance between clusters before contention occurs.

The SDDC virtual infrastructure (VI) teams will ultimately use a combination of these three approaches to avoid and resolve contention in their data centers, and Predictive DRS is a powerful addition to the toolbox for VI teams looking to optimize resource utilization and minimize business impact from resource contention.

Predictive DRS Video

The video will focus on a Predictive DRS walk through showing how simple it is to configure the Predictive DRS feature in both vRealize Operations 6.6 and vSphere 6.5. This walk through will also serve as a great demonstration of the solution and give you a view into how it all comes together. After watching the video you should be easily able to configure it in your environment and start seeing the benefits of Predictive DRS.

You can see more details on this through this video: https://youtu.be/cwaALGTyTMU
Module Conclusion

You have completed Module 1 - Automated Workload Placement and Predictive DRS (pDRS)

You should now have an understanding of:

- Identify and Resolve Workload Contention
- Predictive DRS

Feel free to proceed to the next module below:

Module 2 - Automated Remediation of Issues

How to End Lab

If you wish to conclude your lab at this time click on the END button. This will terminate your lab and all progress. Do this only if you wish to NOT proceed with the other modules.
Module 2 - Automated remediation of issues (30 minutes)
Introduction

In this module we will look at the Alerting Framework in vRealize Operations. We will cover the following topics:

- The Anatomy of the Alerting Framework
- Symptom Construction
- Recommendations and Actions
- Constructing Alert Definitions
- Automated Remediation

This module should take about 30-45 minutes for you to complete.
Understanding the Alerting Framework

The Alerting Framework is a very powerful feature of the vRealize Operations platform. It's a relatively simple construct to understand, but once you master it, you can use it for all sorts of useful purposes in your organisation.

Symptoms Recommendations and Actions

The main construct we use in the Alerting Framework is the **Alert Definition**. It is made up of three parts:

- **Symptoms** - one or more symptoms that define the conditions under which an alert will trigger.
- **Recommendations** - one or more recommendations on what to do if the alert is triggered
- **Actions** - carrying out the recommendation for the alert

Let's start by looking at Symptoms...
Constructing Symptoms

Let’s start by looking at Symptoms

Open Firefox Browser from Windows Quick Launch TaskBar

1. Click on the Firefox Icon on the Windows Quick Launch Task Bar.

Log In to vRealize Operations Manager - if prompted

1. If prompted, Login to vRealize Operations Manager with the following credentials:
2. Click the Login button.
The lab environment has a default resolution of 1024x768. To minimize the need for extensive scrolling within the vRealize Operations user interface, please adjust the zoom level in Firefox.

1. Open the Firefox Menu drop down.
2. Set the desired zoom level. Typically 80-90% is sufficient to provide adequate screen space for vRealize Operations in the lab environment. Also making use of the full-screen option is recommended.
Navigate to Alert Menu

1. Click on the Alerts Menu Item.
Navigate to Alert Definitions

1. Expand the Alert Settings Menu.
2. Click on Symptom Definitions
Find a CPU Ready definition

Most of the Symptom Definitions you will work with will be **Metric/Property Symptom Definitions** which will be selected by default in the left hand pane.

1. Let's take a look at a definition related to *CPU Ready*. Type *ready* in the filter box and hit return
2. Click on the returned *symptom* to highlight it (it will turn blue)
3. Click on the *pencil* icon to edit it
Understanding the symptom definition

Let's look at what makes up the definition:

1. The Metric that this symptom relates to is **CPU | Ready (%)** in the metric tree - you will also see this is a **static threshold**
2. This next section defines the point at which the symptom will trigger - **CPU Ready** is defined as **Critical** when the metric is greater than **10** (percent)
3. Click on the **arrow** next to Advanced to open the advanced features
4. **Wait Cycle** and **Cancel Cycle** are set to **3** - this means we will wait for the symptom to be observed three times before we trigger the symptom, and we will cancel it after it is not seen for three data collections.
5. **Evaluate on instanced metric** - this means we will look at **all** the CPUs on a Virtual Machine

5. Click on **Cancel** to return to the symptom list.
Creating your own symptoms

The scenario we are going to build is one where we have set a performance SLA for our Virtual Machines. We want to trigger an alert when any of the performance metrics have breached their SLA.

The SLA we have is:

- **CPU** - less than 0.5% contention
- **Memory** - zero contention
- **Disk** - less than 10ms latency
- **Network** - zero dropped packets

(This SLA would be appropriate for a production environment)

Let's create the 4 symptom definitions we will need for this:

1. First, click on the **X** to remove the filter we just applied
2. Click on the **plus** icon to create a new Symptom definition
Choose the object type

1. Type **virtual machine** in the Base Object Type field
2. When the list of matches appears, select **Virtual Machine**
We probably need to filter for the metric we are looking for:

1. Click on the **double arrows** to open the filter box
2. Type **ready** in the box and hit **return**
3. Click on the **plus** sign to expand the CPU tree so you can see the two Ready metrics below it
Drag the metric

Click on the **Ready (%)** metric and, holding the mouse button down, drag the metric into the symptoms panel, then release the mouse button.
Configure the Ready (%) Symptom

1. Set the symptom to **Static Threshold**
2. Set the name to - **'Hands on Lab - CPU SLA'**
3. Set the properties to *is Critical when metric is greater than 0.5*
4. You can optionally look at the **Advanced** settings but we won't change them - Wait and Cancel cycles we will leave at 3 - the SLA is based on total Ready time so we don't have to evaluate against each CPU instance
5. Click on **Save** to save the symptom
View the symptom

1. Type **hands on lab** in the filter box and hit **return** so you can see your new symptom
2. Click on the green **plus** icon to add the next symptom

Choose the object type

1. Type **virtual machine** in the Base Object Type field
2. When the list of matches appears, select **Virtual Machine**
Find the Memory Contention metric

We probably need to filter for the metric we are looking for:

1. Click on the double arrows to open the filter box
2. Type contention in the box and hit return
3. Click on the plus sign to expand the Memory tree so you can see the Contention metric below it

Drag the metric

Click on the Contention metric and, holding the mouse button down, drag the metric into the symptoms panel, and release the mouse button
1. Set the symptom to **Static Threshold**
2. Set the name to - *Hands on Lab - Memory SLA*
3. Set the properties to *is Critical when metric is greater than 0*
4. You can optionally look at the Advanced settings but we won't change them - Wait and Cancel cycles we will leave at 3
5. Click on Save to save the symptom
Create the Disk Latency symptom

Now we'll create the Disk latency symptom

In the Symptom definitions list click on the green plus sign to add this third definition

This time...

1. Click on the **double arrows** to open the filter box
2. Type **latency** in the box and hit **return**
3. Expand the **Virtual Disk** then **Aggregate of all instances** trees so you can see the three Latency metrics
Configure the Symptom

This time, drag the Total Latency metric into the Symptom Panel

1. Set the symptom to Static Threshold
2. Set the name to 'Hands on Lab - Disk SLA'
3. Set the properties to is Critical when metric is greater than 10
4. You can optionally look at the Advanced settings but we won't change them - Wait and Cancel cycles we will leave at 3
5. Click on Save to save the symptom
Create the Network Packets Dropped symptom

Finally, we'll create the Network Packets Dropped symptom

In the Symptom definitions list click on the green plus sign to add this fourth definition

This time...

1. Click on the double arrows to open the filter box
2. Type dropped in the box and hit return
3. Expand the Network I/O then Aggregate of all instances trees so you can see the Packets Dropped (%) metric
Configure the Symptom

This time, drag the Packets Dropped (%) metric into the Symptom Panel

1. Set the symptom to **Static Threshold**
2. Set the name to - **Hands on Lab - Network SLA**
3. Set the properties to **is Critical when metric is greater than 0**
4. You can optionally look at the **Advanced** settings but we won't change them - Wait and Cancel cycles we will leave at 3
5. Click on **Save** to save the symptom
Review the Symptoms

You can now see all four symptoms
Recommendations and Actions

Now let's take a quick look at **Recommendations** and **Actions**

Recommendations

1. Click on **Recommendations**

You'll see a list of recommendations. A recommendation is some plain text on what to do, should a particular Alert trigger. It can be short or verbose and in some cases may include links to such things as KB articles. If you create your own, they could include links to your operational manuals.

You can see where Recommendations have been linked to Alert Definitions.

Some Recommendations have **Actions** associated with them.

2. Click on the green **plus** icon to add a new Recommendation.
Create the Recommendation

Add some text, for example - **Hands on Lab - this VM has breached the performance SLA in place. Consider moving it to a different cluster/host or removing workload from the cluster/host it is running on.**

Note: you can cut and paste this text from the readme.txt file on your lab desktop

Click on **Save** once complete

(We'll look at adding actions later...)
1. Click on **Actions**

You can see a list of 'out of the box' Actions that are available. You will notice that there aren't any options to add new custom Actions.

With the current version of vRealize Operations, the following action types are available:

- **Python** - these are provided 'out of the box' and by selected Management Packs, for example the NSX MP.
- **vRealize Orchestrator** - you can optionally install the vRO Solution and Workload Package for vRealize Operations. This allows you to trigger your own vRO workflows from vRealize Operations as Actions. Some example workflows are provided in the Solution. This is available at: https://solutionexchange.vmware.com/store/products/vro-solution-and-workflow-package-for-vrealize-operations-manager

In this lab we are going to use the out of the box Python actions.
Building Alerts

Now let's build an Alert Definition from the four Symptoms and the Recommendation we just built.

Alert Definitions

1. Click on Alert Definitions
2. Click on the green plus icon to start creating the new Alert Definition
Name the Alert

1. Provide a name for the alert - **Hands on Lab - Virtual Machine is breaching SLA**
2. Click on **2. Base Object Type**
1. Type **virtual** in the Base Object Type selection box
2. When the matches appear, select **Virtual Machine**
3. Click on **3. Alert Impact**
The Alert Impact should be set as follows:

1. **Impact** - The default of **Health** is appropriate. This means when the Alert is triggered, it will affect the Health badge.
2. **Criticality** - The default of **Symptom Based** is appropriate. This means it will inherit the criticality of the Symptom(s) triggering the alert.
3. **Alert Type/Subtype** - this should be changed to **Virtualization/Hypervisor : Performance** - this setting affects how alerts are represented in various parts of
the UI. **Use the drop down to select Virtualization/Hypervisor:**

Performance

4. *Wait Cycle* - The default of 1 is appropriate - remember we set the Wait and Cancel Cycles to 3 in the Symptom definitions? This means the Symptoms will trigger after being observed 3 times. The additional Alert wait cycle that we set here defines how long to wait after the Symptom(s) have triggered. A setting of 1 will trigger the alert as soon as the Symptom(s) are triggered.

5. *Cancel Cycle* - The default of 1 is appropriate.

6. Click on **4. Add Symptom Definitions**

Add Symptoms

We will need to filter to find the Symptoms that we created earlier - type **hands on lab** in the filter box and hit **return**.
Drag the CPU SLA Symptom

Click on the **Hands on Lab - CPU SLA** symptom and, holding the mouse button down, drag it to the Alert Definition panel. Release the mouse button.
Add the Disk SLA to the Symptom Set

Drag the **Hands on Lab - Disk SLA symptom** to the same symptom set. As you hover over the symptom set, it will get a **green outline** as in the screenshot. Release the mouse button when you get this green outline.

Don't drag the symptom into the 'Drag another symptom here to add more symptoms' box below (*we'll do this later when we show how the symptom sets work*)
Add the Memory SLA to the Symptom Set

Drag the **Hands on Lab - Memory SLA symptom** to the **same** symptom set. As you hover over the symptom set, it will get a green outline as in the screenshot. Release the mouse button when you get this green outline.

Don't drag the symptom into the 'Drag another symptom here to add more symptoms' box.
Before we drag the final symptom let's change the boolean term.

Click on the 'Base object exhibits' drop down to change it from the default of All to the value Any. This means that if any of our individual SLA symptoms are triggered then the alert will trigger. We don't want to wait for them to all trigger at the same time - that is very unlikely to happen!

We could just add our final Symptom into this symptom set - however, let's create a 2nd symptom set to see how they work.
Add the Network SLA to a new Symptom Set

Drag the **Hands on Lab - Network SLA symptom** to the 'Drag another symptom here to add more symptoms' box.
Change the symptom set boolean term

You may need to scroll down to see both symptom sets as in the screenshot

1. By default, we would be triggering the alert if BOTH symptom sets were triggered. Again, we want to trigger when ANY of the symptom sets are triggered so change the 'Match symptom sets' drop down to Any.

You would usually have just created the single symptom set - for the purposes of this lab we wanted to demonstrate you can have multiple symptom sets with boolean options.
1. Click on **5. Add Recommendations**
2. Again, we need to filter, so type **hands on lab** in the filter box and hit **return**
Drag the recommendation

1. Drag the recommendation into the 'Drag a recommendation...' box and release the mouse button
2. Click on Save to save the Alert Definition

Review the Alert

1. Type the text **hands on lab** into the filter box and hit **return** to find your Alert Definition
2. Use the window divide control and the scroll bar to review the alert that you have just built.

Has the alert triggered?

Hands on Labs are not designed for proper production workloads! We massively overcommit our resources and use vSphere technology to provide the best possible
experience - can you imagine the number of servers we would need if we wanted to run 1000 instances of this lab concurrently with absolutely zero memory, CPU or disk contention!!

To that end, its likely one of our symptoms will have triggered the alert we just created. Given the crazy over-commit we use in the lab we should see some CPU ready time.

1. Click on the Alerts icon
2. Filter the alerts by typing "hands" on the filter box;
3. Check the listed alerts and you should see the alert definition we just created, "Hands on Lab - Virtual Machine is breaching SLA" and expand it to check which VMs has triggered it;
4. Click on the alert link to see the recommendation we created for the alert.
Automated Remediation

Finally, we thought we'd show an example of automated remediation. We are fairly limited in Hands on Labs on the workloads we can have running so we've constructed a slightly different scenario. Hopefully you will find it fun.

In this scenario we are going to monitor our application cluster and turn off any machines that contain "win" in its name! We only want to keep running VMs that actually have a purpose, like DB, APP, WEB or any other useful application for our lab. Any machine that references an OS on its name it is probably a template or a base reference machine and we do not want them running on our cluster.

Browse to vSphere Hosts and Clusters

1. Click on the **Environment** menu item
2. Click on **vSphere Hosts and Clusters**

Find the base/template VM

1. Navigate through the **vSphere World** inventory until you find the **RegionA01-COMP01** cluster object;
2. Expand all the three hosts in the cluster and notice that we have a lot of VMs that are actually useful for our infrastructure except one;
3. Look for a VM called **win-10**. This VM is a base VM that we use to deploy windows machines and has no need to be powered on consuming valuable compute resources. We are going to create a symptom definition that will automatically shutdown this VM.

Adding Symptom Definitions to shutdown VMs

We are going to need to add three informational **Symptom Definitions** that are going to define the conditions under which this alert will be triggered:

a. The cluster is called **RegionA01-COMP01**;

b. The VM in the cluster contains the prefix **win** in its name;
c. The VM is **powered on**.

So, if we see a VM in the "**RegionA01-COMP01**" cluster that has the prefix "win" in its name and its **powered on**, we're going to power it off!

Definition for filtering the cluster resource

1. Click on the **Alerts** tab to add the first definition;
2. Click on **Symptom Definitions** (you may have to expand the **Alert Settings** menu);
3. Click on the **green plus sign** to create a new definition.
Selecting Properties

1. In the Base Object Type field type **Virtual Machine** to define the symptom to VM objects only;
2. Change the selector to from Metrics to **Properties**.

Adding the Parent Cluster
1. Click the arrow to expand the *Summary* section, select *Parent Cluster* property and Drag and drop or Double-click to add it to the Symptom Definition right panel;
2. In the *Symptom Definition Name* field type *Hands on Lab - COMP01*;
3. Change the condition to *Equals*;
4. Select the *RegionA01-COMP01* cluster from the value list;
5. Click the *SAVE* button.

Definition for filtering the VM by name

1. Click on the *Alerts* tab to add the second definition;
2. Click on *Symptom Definitions* (you may have to expand the *Alert Settings* menu);
3. Click on the *green plus sign* to create a new definition.
Selecting Properties

1. As we did before, in the Base Object Type field type **Virtual Machine** to define the symptom to VM objects only;
2. Change the selector to from Metrics to **Properties**.

Adding the VM name

1. Click the arrow to expand the **Configuration** section, select the **Name** property and drag and drop or double-click to add it to the Symptom Definition right panel;
2. In the *Symptom Definition Name* field type **Hands on Lab - win VM**;
3. Change the condition to **Contains**;
4. Type **win** in the value list;
5. Click the **SAVE** button.

Definition for filtering the VM by power state

1. Click on the **Alerts** tab to add the third definition;
2. Click on **Symptom Definitions** (you may have to expand the **Alert Settings** menu);
3. Click on the **green plus sign** to create a new definition.
1. In the Base Object Type field type **Virtual Machine** to define the symptom to VM objects only;
2. In the filter field type **power** to filter the metrics related to power state;
3. Click the arrow to expand the System section and select the **Powered ON** metric and drag and drop or double-click to add it to the Symptom Definition right panel;
4. In the **Symptom Definition Name** field type **Hands on Lab - Power State**;
5. Change the condition to **is**;
6. Type number **1** in the value field;
7. Click on **Advanced** to expand it;
8. Change the **Wait** and **Cancel Cycle** to **1**;
9. Click the **SAVE** button.
Create the Recommendation

1. Click on the **Alerts** Menu Item
2. Expand the **Alert Settings** Menu
3. Click on **Recommendations**
4. Click on the green **plus** icon

Description:

Add a new virtual hard disk or expand the existing disk of a specific procedure to expand the file system on the new operating system. Remove all snapshots before expanding an existing disk. After creating a new vRealize Operations Manager Node to the vRealize Operations Manager, then rebalance the cluster. To rebalance connect to the UI and then the Cluster Management view and select the required nodes. Add an additional NIC to the host.
Add an action

1. Provide a recommendation, for example - **Hands on Lab** - if the machine contains the prefix win in its name and it is powered on on the RegionA01-COMP cluster it should be Powered Off because its a base/template machine used for deployment of new Windows VMs and we do not want to waste valuable compute resources with template VMs.

2. In the actions drop down, select the **Power Off VM** action

3. Click on **Save**
Create the Alert Definition

We have our three Symptoms and the Recommendation, let's now create the Alert Definition

1. Click on the **Alerts** Menu Item
2. Expand the **Alert Settings** Menu
3. Click on **Alert Definitions**
4. Click on the green **plus** icon
Name the alert

1. Provide a name - **Hands on Lab - Power off rogue VM**
2. Select 2. Base Object Type
1. Select the **Virtual Machine** object type
2. Click on **3. Alert Impact**
Alert Impact

For **Alert Impact** you can leave everything as default except:

1. **Criticality** - this time we are using informational symptoms but together they create a critical alert - so we will set the criticality to **Critical** instead of Symptom Based
2. Change **Alert Type and Subtype** to **Virtualization/Hypervisor : Availability**
3. Click on **4. Add Symptom Definitions**
Filter for Hands on Lab

1. In the filter field type **hands** and hit **ENTER**.

Drag the first symptom
Drag **Hands on Lab - COMP01** to the Symptom Definition box

Drag the 2nd symptom

Drag the **Hands on Lab - win VM** symptom into the same symptom set box. Release the mouse button when the box turns green.

As before, do not drag it into the 'Drag another symptom...' box as we don't want to create a 2nd symptom set.
Drag the 3rd Symptom

1. You may need to scroll down to see the last Symptom
2. Drag the **Hands on Lab - Power State** symptom into the same symptom set box. Release the mouse button when the box turns green

As before, do not drag it into the 'Drag another symptom...' box as we don't want to create a 2nd symptom set
Add the recommendation

1. In the filter box type **hands** and hit **ENTER**;
2. Drag the '...if the machine contains the prefix...' recommendation you just created into the 'Drag a recommendation...' box

Save

Your alert should look like this

1. Click on **Save** to save the alert
View the Alert

The Alert should have triggered. To find it:

1. Click on the Home icon
2. Click on Virtual Machines
3. The Alert should be listed in the Alerts panel. Click on Hands on Lab - Power Off rogue VM alert to see its details.

If the Alert has not triggered, wait 30 seconds and click on the refresh icon to try again

Alert Details
We can see the alert detail including a button to **Run Action** that should run the Power Off the VM action. **Don't press this yet!!**

Let's automate the action...to do this we need to change the policy for this alert.

Edit the HOL policy

1. Click on the **Administration** menu;
2. Click on the **Policies** tab in the left menu;
3. Click on **Policy Library**;
4. Click on **Hands On Lab Policy**;
5. Click on the **pencil** icon to edit the policy.
Alert/Symptom Definitions

1. Click on **6. Alert/Symptom Definitions**;
2. Filter the alerts by typing **hands** in the filter field;
3. Select the 'Hands on Lab - Power of...' alert listed;
4. Click on **Actions > Automate > Enable**;
5. Click on the **SAVE** button.
1. Clicking on the **HOME** menu item in the top will take you back to alerts (make sure that **Recommended Actions** is selected in the left menu);
2. Click on the **Hands on Lab - Power off rogue VM** for the **win-10** virtual machine.
Cancel the alert

Although we have now automated the Alert, it won't turn the VM off as this particular Alert is already triggered. Automation happens at the time the Alert is triggered. So, we need to cancel the alert and wait for it to trigger again.

1. Click on **Action** menu and then **Cancel Alert** menu option.
2. Confirm the Cancel Alert for the selected alert on the confirmation prompt (not shown).

Now that we have canceled the Alert it should trigger again and automatically shut down the VM since all the conditions are still true.
Review Recent Tasks

1. Click on the **Administration** menu item
2. Expand the **History** Menu and click on **Recent Tasks**
3. You will see that the **Power Off VM** action was logged as automated

If you did power on the machine again you will see that action in progress - if you wait a bit longer it will turn off again! No way that VM is staying powered on unless you rename it!
Confirm that the VM was Powered Off

1. Click on Environment;
2. Select vSphere Hosts and Clusters (not shown) and browse through the inventory to find the win-10 VM;
3. Select the win-10 VM and notice that it is now powered off (take a look at symbol with an red arrow pointing down).
Conclusion

In this module you learned:

- The architecture of vRealize Operations Alerting Framework
- How to construct Symptoms
- How to create Recommendations and Actions
- How to build Alerts
- How to do a automated remediation of issues

Congratulations on completing "Module 2 - Automated remediation of issues"

Congratulations on completing Module 1.

If you are looking for additional information on monitoring objects in your managed environment for "Automated remediation of issues", try one of these:

- Click on this [link](https://tinyurl.com/yb9xtw59)
- Or go to https://tinyurl.com/yb9xtw59
- Or use your smart device to scan the QRC Code.

Proceed to any module below which interests you most.

- [Module 1 - Automated workload placement and predictive DRS](https://tinyurl.com/yb9xtw59) (60 minutes)
 (Basic)
How to End Lab

To end your lab click on the **END** button.
Conclusion

Thank you for participating in the VMware Hands-on Labs. Be sure to visit http://hol.vmware.com/ to continue your lab experience online.

Lab SKU: HOL-1801-02-CMP

Version: 20180206-160051